Coregulation of the cyclic lipopeptides orfamide and sessilin in the biocontrol strain Pseudomonas sp. CMR12a
نویسندگان
چکیده
Cyclic lipopeptides (CLPs) are synthesized by nonribosomal peptide synthetases (NRPS), which are often flanked by LuxR-type transcriptional regulators. Pseudomonas sp. CMR12a, an effective biocontrol strain, produces two different classes of CLPs namely sessilins and orfamides. The orfamide biosynthesis gene cluster is flanked up- and downstream by LuxR-type regulatory genes designated ofaR1 and ofaR2, respectively, whereas the sessilin biosynthesis gene cluster has one LuxR-type regulatory gene which is situated upstream of the cluster and is designated sesR. Our study investigated the role of these three regulators in the biosynthesis of orfamides and sessilins. Phylogenetic analyses positioned OfaR1 and OfaR2 with LuxR regulatory proteins of similar orfamide-producing Pseudomonas strains and the SesR with that of the tolaasin producer, Pseudomonas tolaasii. LC-ESI-MS analyses revealed that sessilins and orfamides are coproduced and that production starts in the late exponential phase. However, sessilins are secreted earlier and in large amounts, while orfamides are predominantly retained in the cell. Deletion mutants in ofaR1 and ofaR2 lost the capacity to produce both orfamides and sessilins, whereas the sesR mutant showed no clear phenotype. Additionally, RT-PCR analysis showed that in the sessilin cluster, a mutation in either ofaR1 or ofaR2 led to weaker transcripts of the biosynthesis genes, sesABC, and putative transporter genes, macA1B1. In the orfamide cluster, mainly the biosynthesis genes ofaBC were affected, while the first biosynthesis gene ofaA and putative macA2B2 transport genes were still transcribed. A mutation in either ofaR1, ofaR2, or sesR genes did not abolish the transcription of any of the other two.
منابع مشابه
To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a.
Pseudomonas CMR12a is a biocontrol strain that produces phenazine antibiotics and as yet uncharacterized cyclic lipopeptides (CLPs). The CLPs of CMR12a were studied by chemical structure analysis and in silico analysis of the gene clusters encoding the non-ribosomal peptide synthetases responsible for CLP biosynthesis. CMR12a produces two different classes of CLPs: orfamides B, D and E, whereby...
متن کاملBiosynthesis, Chemical Structure, and Structure-Activity Relationship of Orfamide Lipopeptides Produced by Pseudomonas protegens and Related Species
Orfamide-type cyclic lipopeptides (CLPs) are biosurfactants produced by Pseudomonas and involved in lysis of oomycete zoospores, biocontrol of Rhizoctonia and insecticidal activity against aphids. In this study, we compared the biosynthesis, structural diversity, in vitro and in planta activities of orfamides produced by rhizosphere-derived Pseudomonas protegens and related Pseudomonas species....
متن کاملAntimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing
Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few...
متن کاملBiological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a.
Pseudomonas CMR12a was previously selected as an efficient biocontrol strain producing phenazines and cyclic lipopeptides (CLPs). In this study, biocontrol capacity of Pseudomonas CMR12a against Rhizoctonia root rot of bean and the involvement of phenazines and CLPs in this ability were tested. Two different anastomosis groups (AGs) of Rhizoctonia solani, the intermediately aggressive AG 2-2 an...
متن کاملRecent developments in Pseudomonas biocontrol mechanisms
Fluorescent pseudomonads are an effective source of biological control that have high adaptive power and able to produce a wonderful source of secondary metabolites. Antibiotics such as phenazines, diacetylphloroglucinol, and hydrogen cyanide are produced by certain taxonomic groups of the genus Pseudomonas and appear to be ancestral. These compounds often play a physiological role in the produ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017